

Geofoam Applications & Recent Trends

Charleston, WV October, 2010

Bridge Abutment With Piles

Levee Applications

MSE Wall Transition

Physical Properties

Typical Physical Properties of InsulFoam GF*

Type- ASTM D6817	Units	EPS12	EPS15	EPS19	EPS22	EPS29	EPS39	EPS46
Density, min.	lb/ft ³	0.70	0.90	1.15	1.35	1.80	2.40	2.85
	(kg/m ³)	(11.2)	(14.4)	(18.4)	(21.6)	(28.8)	(38.4)	(45.7)
Compressive Resistance**	psi	2.2	3.6	5.8	7.3	10.9	15.0	18.6
min. @ 1% deformation	(kPa)	(15)	(25)	(40)	(50)	(75)	(103)	(128)
Compressive Resistance**	psi	5.1	8.0	13.1	16.7	24.7	35.0	43.5
min. @ 5% deformation	(kPa)	(35)	(55)	(90)	(115)	(170)	(241)	(300)
Compressive Resistance**	psi	5.8	10.2	16.0	19.6	29.0	40.0	50.0
min. @ 10% deformation	(kPa)	(40)	(70)	(110)	(135)	(200)	(276)	(345)
Flexural Strength, min.	psi	10.0	25.0	30.0	40.0	50.0	60.0	75.0
	(kPa)	(69)	(172)	(207)	(276)	(345)	(414)	(517)
Oxygen Index, min.	volume %	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dimensional Stability	(max. %)	< 2%	< 2%	< 2%	< 2%	< 2%	< 2%	< 2%
Buoyancy Force	lb/ft ³	61.7	61.5	61.3	61.1	60.6	60.0	59.5
	(kg/m ³)	(990)	(980)	(980)	(980)	(970)	(960)	(950)
Poisson's Ratio	-	.05	.05	.05	.05	.05	.05	.05
Coefficient of Friction	-	.6	.6	.6	.6	.6	.6	.6
Absorption	volume %	< 4.0	< 4.0	< 3.0	< 3.0	< 2.0	< 2.0	< 2.0
Elastic Modulus, min.	psi	220	360	580	730	1090	1500	1860
	(kPa)	(1500)	(2500)	(4000)	(5000)	(7500)	(10300)	(12800)

*Properties are based on data provided by resin manufacturers, independent test agencies and Insulfoam.

** For InsulFoam GF applications the design load stresses should not exceed 1% strain for combined live and dead loads.

ELIMINATE OR REDUCE LATERAL LOADING ON RETAINING STRUCTURES

ZERO NET LOADING FOR SOFT SOIL REMEDIATION

ENGINEERED FOR SLOPE STABILIZATION

PROTECT AND LIGHTEN THE LOAD ON BURIED UTILITIES

KEEP IT SIMPLE AND FAST WITH STRUCTURAL VOID FILL CONCRETE APPLICATIONS

Lighten the Load

5 MAJOR APPLICATIONS TO CONSIDER GEOFOAM

- InsulFoam GF replaces the sliding soil wedge
- Native soils are self supporting when excavated back to the angle of repose
- InsulFoam GF is self supporting
- End result: ZERO lateral load on the retaining structure

Eliminate or Reduce Lateral Loads for

RETAINING STRUCTURES

I80 & 148th Street Waverly, NE

I-680 & Pacific St - Omaha, NE

University Student Housing Morgantown, WV

I-680 Interchange – Martinez, CA

- Soft soils only settle when more weight is added on top
- Calculate the weight of the Geofoam and all other loads
- Excavate an equivalent weight of native soil
- End Result: Net ZERO loading

Net Zero Load Designs for

SOFT SOIL REMEDIATION

Topaz Bridge Southeast, Idaho

I-405 Totem Lake Freeway Kirkland, WA

Louis Armstrong Int'l Airport New Orleans, LA

- Heavy Soils + Gravity + H₂O = High Landslide Potential
- Geofoam is up to 100 times lighter than soil
- Using Geofoam reduces the weight <u>and</u> the risk

Lighten the driving block for

SLOPE STABILIZATION

US 101 - Willits, CA

US 160 Durango, CO

 Reduces dead and lateral loads on underground pipes, culverts and tunnels

 Protects utility during seismic activity by reducing axial strain

 Provides high thermal insulation values that protect against severe temperature fluctuations

Protect and lighten the load on top of

BURIED UTILITY PROTECTION

Route 1 & 9 Interchange Jersey City, NJ

Hanging Lake Tunnel Glenwood Canyon, CO

• Eliminates separate concrete pours for vertical wall sections

 Reduces overall amount of concrete or other heavy fills

 Reduces dead loads on underlying structures

Any shape or slope can be easily fabricated on site

Keep it Simple and Fast with

STRUCTURAL VOID FILL CONCRETE APPLICATIONS

Bridge Beam Voids

Concrete Cap on Median Barrier

No need for any compaction in between and around the columns prior to concrete cap pour

Recent Trends

UTA TRAX, Salt lake City, UT

Combination of Remediations

Highway 241, St. Michael, MN

Sloped vs. Vertical

Port of Longview, Longview, WA

Seismic Considerations

Shear keys should be used to interrupt horizontal interfaces and improve sliding stability for large near source earthquakes Geofoam blocks with higher strength should be placed in the basal layers of the geofoam

 An alternate is to utilize a moisture cured polyurethane adhesive, which works well in a wide range of temperatures

embankment

Levee Applications

North Creek Levee – Bothell, WA

InsulGrip / Flexible FastTM

- 4" x 4" 20 ga. galvanized steel plate
- 60 lbs designed lateral load per plate
- Minimum of two plates per 4' x 8' area

- moisture cured polyurethane adhesive
- works well in a wide range of temperatures

Utilization of Geomembrane

Shotcrete Over Geofoam

Faster Installation & Less Handling

FHWA National Deployment Goal

- By October 2010, EPS geofoam will be a routinely used lightweight fill alternative for State DOTs on embankment projects where the construction schedule is of concern.
- By October 2011, all States will have evaluated EPS geofoam as a lightweight fill alternative.

It's not all in the density!

Understanding ASTM D6817 (different than ASTM C578) (different then NCHRP 529)

ASTM D6817 vs. C578 Geotechnical Insulation

		Density lb/ft³, min.	Compressive Resistance, min. psi @ 10% deformation	Flexural Strength, Min., psi
ASTM D6817	EPS 15	.90	10.2	25
ASTM C578	Type I	.90	10.0	25
ASTM D6817	EPS 19	1.15	16.0	30
ASTM C578	Type VIII	1.15	13.0	30
ASTM D6817	EPS 22	1.35	19.6	40
ASTM C578	Type II	1.35	15.0	35
ASTM D6817	EPS 29	1.80	29.0	50
ASTM C578	Type IX	1.80	25.0	50

ASTM D6817 vs. NCHRP 529

NCHR REPORT &	D NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM	Density lb/ft ³ , min.	Compressive Resistance, min. psi @ 1% deformation	Elastic Modulus, Ibs/in² min.	
ASTM D6817	EPS 15	.90	3.6	360	
NCHRP 529	EPS 40	.90	5.8	580	
ASTM D6817	EPS 19	1.15	5.8	580	
NCHRP 529	EPS 50	1.15	7.2	725	
ASTM D6817	EPS 22	1.35	7.3	730	
NCHRP 529	EPS 70	1.35	10.2	1015	
ASTM D6817	EPS 29	1.80	10.9	1090	
NCHRP 529	EPS 100	1.80	14.5	1450	
ASTM D6817	EPS 39	2.40	15.0	1500	
NCHRP 529	-	-	-	-	

What are the alternatives to using InsulFoam GF?

1 truckload of InsulFoam GF = 12 trucks of soil

Other alternatives include: Wood Chips, Tires, Waste, Concrete

ENGINEERED EPS /ersatile - Durable - Recyclable

When to use Geofoam

- Soil fill is expensive to bring in due to access and job location
- A reduction in wall lateral stress is required
- The construction schedule is tight
- Underlying soils have low bearing capacity which would cause unacceptable soil settlement.

Nico Sutmoller Geofoam Specialist

